First order second moment analysis for stochastic interface problems based on low-rank approximation
نویسندگان
چکیده
منابع مشابه
Stochastic algorithms for solving structured low-rank matrix approximation problems
In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. We demonstrate that finding optimal s...
متن کاملSparse second moment analysis for elliptic problems in stochastic domains
We consider the numerical solution of elliptic boundary value problems in domains with random boundary perturbations. Assuming normal perturbations with small amplitude and known mean field and two-point correlation function, we derive, using a second order shape calculus, deterministic equations for the mean field and the two-point correlation function of the random solution for a model Dirich...
متن کاملFinite Element Based Second Moment Analysis for Elliptic Problems in Stochastic Domains
We present a finite element method for the numerical solution of elliptic boundary value problems on stochastic domains. The method computes, to leading order in the amplitude of the stochastic boundary perturbation relative to an unperturbed, nominal domain, the mean and the variance of the random solution. The variance is computed as the trace of the solution’s two-point correlation which sat...
متن کاملOn the second order first zagreb index
Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...
متن کاملApproximation of Second-Order Moment Processes from Local Averages
In the literature, very few researchers considered approximating Brownian motion using Bernstein polynomials. Kowalski 1 is the first one who uses this method. In fact, if we restrict Brownian motion on 0, 1 , it is a real process with finite second order moment. In this paper, we will approximate all of the complex second order moment processes on a, b by Bernstein polynomials and other classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 2013
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/2013079